Solving Problems Using Acute Triangles

Strategies to solve acute triangles:
« Sine Law
« Cosine Law
« Primary Trigonometric ratios
« Pythagorean Theorem
« Sum of angles in a Triangle

Example 1:

In order to measure the height of an inaccessible cliff, $A B$, a surveyor lays off a baseline CD and records the following data: $\angle B C D=68.2^{\circ}, \angle B D C=52.8^{\circ}, C D=210 \mathrm{~m}$, and $\angle A C B=32^{\circ}$. Find the height of the cliff $A B$.

Example 2:

A children's playground, in the shape of a quadrilateral, is to be fenced. Determine the total length of fencing required.

Example 3:

A ship passing an island establishes, by sonar, a distance of 8 km from the ship to one end of the island and 9 km to the other end of the island. The angle formed at the ship, from the sonar, is 74°.
Determine the length of the island.

Example 4:

Determine the distance, d , between the two satellites.

In Summary

Key Idea

- The sine law, the cosine law, the primary trigonometric ratios, and the sum of angles in a triangle may all be useful when solving problems that can be modelled using acute triangles.

Need to Know

- To decide whether you need to use the sine law or the cosine law, consider the information given about the triangle and the measurement to be determined.

- Drawing a clearly labelled diagram makes it easier to select a strategy for solving a problem.

