Math 2201

Review Chapter One

1. Examine the following number patterns:

$$1^{3} = 1 \qquad and \ 1 = 1^{2}$$

$$1^{3} + 2^{3} = 9 \qquad and \ 9 = 3^{2}$$

$$1^{3} + 2^{3} + 3^{3} = 36 \qquad and \quad 36 = 6^{2}$$

$$1^{3} + 2^{3} + 3^{3} + 4^{3} = 100 \qquad and \ 100 = 10^{2}$$

- A) Describe the pattern you see. The sum of the digits squared equals the sum of the cubes
- B) Use your observation to predict the next equation in the pattern. $1^3 + 2^3 + 3^3 + 4^3 + 5^3 = (1 + 2 + 3 + 4 + 5)^2 = 15^2 = 225$
- C) Make a conjecture about the sum of the first n cubes. The sum of the first n cubes equals the square of the sum of the first n numbers.
- Sadie claims that the difference between any two positive integers is always a positive integer.
 Do you agree or disagree? Use inductive reasoning to justify your answer. (12)-(16)=-4
- 3. Prove, using deductive reasoning, that the product of two odd integers is always odd. $(2x + 1)(2x + 3) = 4x^2 + 8x + 3$ Since $4x^2$ and 8x are always even – adding 3 will always make it odd!
- 4. Examine this pattern to determine the next equation.

Is your conjecture correct? Explain how you know.

The next multiple of 3 is 15 and 37 x 15 is 555!

5. Frank tosses a coin five times , each time it comes up tails. He makes the following conjecture: The coin will come up tails on every toss. Is his conjecture reasonable? Explain.

No - there is always a 50/50 chance that each new toss will be heads or tails!

6. Prove, deductively, that the product of two consecutive odd integers is always odd.

Same as 3

7. The following proof seems to show that 10 =9.9999..... Is this proof valid? Explain

Let a = 9.99999....

10a = 99.99999	Multiply by 10		
10a – a = 90	Subtract a	No subtract a or 9.999 from both sides	
9a = 90	Simplify	9a = 99.9999 – a	
a = 10	Divide by 9		

8. Julie was trying to prove that a number trick always results in 5:

Ν	Choose a number	
N+10	Add 10	
5N + 10	Multiply the total by 5	5N + 50
5N - 40	Subtract 50	5N
$\frac{5N-40}{N}$	Divide by the number you started with. 5	

Identify the error in Julie's proof, and correct it.

- 9. Andy, Bonnie, Candice, and Darlene are standing in line to buy ice cream. Determine the order in which they are lined up, using these clues:
 - Candice is between Andy and Bonnie
 - Darlene is next to Andy
 - Bonnie is not first

	1	2	3	4
Andy		у		
Bonnie	х			У
Candice			у	
Darlene	у			

Darlene, Andy, Candice, Bonnie

- 10. Two mothers and a daughter got off a city bus, reducing the number of passengers by three. Explain how this is possible. Mother – her daughter-the daughter's daughter – 3 people
- 11. Three little pigs built three houses: one of straw , one of sticks, and one of bricks. By reading the six clues, deduce which pig built each house, and the town in which it was located. Clues
 - Penny Pig did not build a brick house
 - The straw house was not medium In size
 - Perry Pig's house was made of sticks, and it was neither medium nor small in size
 - Patricia Pig built her house in Marystown
 - The house in Lawn was large
 - One house was in a town called Epworth
 - Penny straw, Epworth, small
 - Perry sticks, Lawn, large
 - Patricia brick, Marystown, medium
- 12. Prove the following trick always ends in 10. Do one example and then use deductive reasoning.

•	Choose a natural number	10	n
•	Double it	2x10=20	2n
•	Add 20	20+20 = 40	2n+20
•	Divide by 2	40/2 = 20	n+10
•	Subtract the original number	20- 10 = 10	n+10-n = 10