Review Chapter One

1. Examine the following number patterns:

$$
\begin{gathered}
1^{3}=1 \quad \text { and } 1=1^{2} \\
1^{3}+2^{3}=9 \quad \text { and } 9=3^{2} \\
1^{3}+2^{3}+3^{3}=36 \quad \text { and } 36=6^{2} \\
1^{3}+2^{3}+3^{3}+4^{3}=100 \quad \text { and } 100=10^{2}
\end{gathered}
$$

A) Describe the pattern you see. The sum of the digits squared equals the sum of the cubes
B) Use your observation to predict the next equation in the pattern. $1^{3}+2^{3}+3^{3}+4^{3}+5^{3}=$ $(1+2+3+4+5)^{2}=15^{2}=225$
C) Make a conjecture about the sum of the first n cubes. The sum of the first n cubes equals the square of the sum of the first n numbers.
2. Sadie claims that the difference between any two positive integers is always a positive integer. Do you agree or disagree? Use inductive reasoning to justify your answer. (12)-(16)=- 4
3. Prove, using deductive reasoning, that the product of two odd integers is always odd. $(2 x+1)(2 x+3)=4 x^{2}+8 x+3$ Since $4 x^{2}$ and $8 x$ are always even - adding 3 will always make it odd!
4. Examine this pattern to determine the next equation.

$$
\begin{aligned}
& 37 \times 3=111 \\
& 37 \times 6=222 \\
& 37 \times 9=333 \\
& 37 \times 12=444 \quad 37 \times 15=555
\end{aligned}
$$

Is your conjecture correct? Explain how you know.
The next multiple of 3 is 15 and 37×15 is 555!
5. Frank tosses a coin five times, each time it comes up tails. He makes the following conjecture: The coin will come up tails on every toss. Is his conjecture reasonable? Explain.

No - there is always a $50 / 50$ chance that each new toss will be heads or tails!
6. Prove, deductively, that the product of two consecutive odd integers is always odd. Same as 3
7. The following proof seems to show that $10=9.9999$..... Is this proof valid? Explain Let $\mathrm{a}=9.99999 . .$. .

$10 \mathrm{a}=99.99999 \ldots$	Multiply by 10
$10 \mathrm{a}-\mathrm{a}=90$	Subtract a
No subtract a or $9.999 \ldots$ from both sides	
$9 \mathrm{a}=90$	Simplify
$\mathrm{a}=10$	Divide by 9

8. Julie was trying to prove that a number trick always results in 5:

N	Choose a number	
$N+10$	Add 10	
$5 N+10$	Multiply the total by 5	$5 \mathrm{~N}+50$
$5 N-40$	Subtract 50	5 N
$\frac{5 N-40}{N}$	Divide by the number you started with. 5	

Identify the error in Julie's proof, and correct it.
9. Andy , Bonnie, Candice, and Darlene are standing in line to buy ice cream. Determine the order in which they are lined up, using these clues:

- Candice is between Andy and Bonnie
- Darlene is next to Andy
- Bonnie is not first

	1	2	3	4
Andy		y		
Bonnie	x			y
Candice			y	
Darlene	y			

Darlene, Andy, Candice, Bonnie
10. Two mothers and a daughter got off a city bus, reducing the number of passengers by three. Explain how this is possible. Mother - her daughter-the daughter's daughter - 3 people
11. Three little pigs built three houses: one of straw, one of sticks, and one of bricks. By reading the six clues, deduce which pig built each house, and the town in which it was located.
Clues

- Penny Pig did not build a brick house
- The straw house was not medium In size
- Perry Pig's house was made of sticks, and it was neither medium nor small in size
- Patricia Pig built her house in Marystown
- The house in Lawn was large
- One house was in a town called Epworth

Penny - straw, Epworth, small
Perry - sticks, Lawn, large
Patricia - brick, Marystown, medium
12. Prove the following trick always ends in 10. Do one example and then use deductive reasoning.

- Choose a natural number
- Double it
- Add 20
- Divide by 2

10
n

- Subtract the original number
-

$2 n$
$2 \times 10=20$
2
$20+20=40$
$2 n+20$
$20-10=10$
$\mathrm{n}+10$
$n+10-n=10$

