1. Solve each equation by factoring.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

a) $x^{2}+8 x=-15$
b) $100 x^{2}=121$
c) $7 x^{2}-2 x=0$
d) $3 x^{2}-16 x-12=0$
e) $5 x^{2}-44 x+120=-30+11 x$
f) $2 x(x-3)=20$
2. Algebraically determine the EXACT roots of the equation: $4 x^{2}+4 x-5=0$ Simplify completely.
3. Using calculations, how many times does the graph of each equation cross the x - axis?
a) $y=2 x^{2}-4 x+1$
b) $y=9 x^{2}-6 x+1$
c) $y=5 x^{2}+7 x+3$
4. Two integers differ by 4. The sum of their squares is 58 . Write a quadratic equation to represent this situation and determine the two numbers.
5. Given the standard form of the quadratic function,

$$
y=2 x^{2}+10 x+8, \text { determine the } \quad \text { d) sketch the graph }
$$

a) vertex
b) y-intercept
c) x-intercept(s)

6. A photo framer wants to place a mat of uniform width all around a photo. The dimensions of the photo are 11 in . by 14 in . If the total area of the mat and photo is $300 \mathrm{in}^{2}$, what is the width of the mat?
7. The length of one leg of a right triangle is 3 more than the other leg. If the hypotenuse is 15 m , what is the length of the shortest leg?
8. A ball is thrown into the air from a bridge that is 15 m above a river. The function of the height, $h(t)$, in meters, of the ball over time, t, in seconds, is $h(t)=-4.9 t^{2}+9 t+15$.
When is the ball 17 m above the water?

