Section 6.4: Vertex Form of a Quadratic Function
 $$
\left\llcorner_{y=a(x-h)^{2}+k}\right.
$$

Investigate

A. The Effect of Parameter \boldsymbol{a} in $y=a x^{2}$ on the graph of $y=x^{2}$
B. The effect of parameter \mathbf{k} in $y=x^{2}+k$ on the graph of $y=x^{2}$
C. The Effect of Parameter \mathbf{h} in $y=(x-h)^{2}$ on the graph of $y=x^{2}$

The effect of parameter h in $y=(x-h)^{2}$ on the graph of $y=x^{2}$

$$
y=x^{2}
$$

x	y
-2	4
-1	1
0	0
1	1
2	4
3	9

$y=(x+3)^{2}$	$y=(x-1)^{2}$
vertex $=$	vertex $=$
shift $=$	shift $=$
HT=	HT=

What is the effect of h?

$>$ translates the parabola horizontally (left/right)
$>\mathrm{h}=x$-coordinate of vertex

$>$ the equation of the axis of
symmetry is $x=\mathrm{h}$

Example: State the transformations and the coordinates of the vertex for each quadratic function.
(a) $y=(x+3)^{2}+1$

Vertex:

\qquad
(b) $y=-3(x-1)^{2}-2$

Vertex: \qquad

Example:

Without the aid of a graph, determine the coordinates of the vertex for:
(i) $y=(x+7)^{2}-2$
(ii) $y=4(x-5)^{2}+3$

Summary

A quadratic function is in vertex form when it is written in the form

$$
y=a(x-h)^{2}+k
$$

where • a indicates direction of opening and width of graph

- coordinates of the vertex (h, k)
- equation of axis of symmetry $x=h$

Example: Sketch the graph of a quadratic function in vertex form.

$$
f(x)=-\frac{1}{2}(x-4)^{2}+3
$$

(a) state the direction of opening \qquad
(b) state the coordinates of the vertex \qquad
(c) state the equation of axis of symmetry
(d) determine the y-intercept \qquad
(e) sketch the graph
(f) state the domain and range

Domain: \qquad

Range: \qquad

Predicting the number of zeros of a quadratic function.

For each quadratic function:
-state the direction
-sketch the graph
-the vertex
-state the number of x - intercepts
(a) $y=x^{2}-4$

Direction: \qquad
Vertex: \qquad
Number of x - intercepts: \qquad

(b) $y=(x-4)^{2}$

Direction: \qquad
Vertex: \qquad

Number of x - intercepts: \qquad
(c) $y=(x-4)^{2}+4$

Direction: \qquad
Vertex: \qquad

Number of x - intercepts: \qquad

Example: Predict the number of x - intercepts (or zeros) for:
(i) $y=-2 x^{2}+4$
(ii) $f(x)=\frac{1}{2}(x+3)^{2}-4$
(iii) $g(x)=-(x+2)^{2}$

6.5: Solving Problems Using Quadratic Models.
 Determining the equation of a parabola from a graph.

Review: Determine the equation using x-intercepts

Example: Determine the equation using the vertex

Example: Determine the equation of the quadratic in vertex form.
(i)

(ii)

(iii) A parabola has vertex at $(2,-6)$ and passes through the point $(4,8)$, determine the function. Determine the equation of the quadratic and state the range.

(iv) A parabola intercepts the $x-$ axis at -4 and 6 and has a maximum value of 5. Determine the function that models the parabola and state the range.

(v)

A basketball player taking a free throw releases the ball at a height of 8 feet while standing on the free throw line. At 7 feet from the free throw line the ball attains a maximum height of 13 ft .

(a) Determine the quadratic function that models the path of the basketball.
(b) Determine the height of the ball when it is 3 feet from the free throw line.

(vi)

A quarterback throws the ball from an initial height of 6 feet. It is caught by the receiver 50 feet away, at a height of 6 feet. The ball reaches a maximum height of 20 feet during its flight. Determine the quadratic function which models this situation and state the domain and range.

