Section 6.2: Properties of Graphs of Quadratic Functions

- determine the vertex of a quadratic in standard form
- sketch the graph
- determine the y-intercept, x-intercept(s), the equation of the axis of symmetry, domain and range

Remember

Vertex: The point at which the quadratic function reaches its maximum or minimum value.

Vertex of a Quadratic Function

Complete the table.

Function	Vertex (\max / min)	a	b	c	$-\frac{b}{2 a}$	Eqn. Axis of Sym.	y-int
$y=x^{2}-4 x+7$							
$y=-0.5 x^{2}-2 x-5$							
$y=3 x^{2}-6 x+10$							

Summary:

(a) Given a quadratic in standard form $y=a x^{2}+b x+c$ the x - coordinate of the vertex can be determined using

$$
x=-\frac{b}{2 a}
$$

(b) Substitute the x-value back into the equation $y=a x^{2}+b x+c$ and solve for the y-coordinate
(c) The x-coordinate of the vertex $=$ axis of symmetry
(d) The y-intercept is the C value or solve for y by setting $x=0$

Example: Identify the vertex, \# of x-intercepts, the y-intercept and equation of the axis of symmetry for each quadratic function.
a) $y=2 x^{2}-12 x+5$
b) $y=2 x^{2}+4 x-3$
c) $y=-3 x^{2}+2 x+1$
d) $y=3 x^{2}+12$
e) $y=3 x^{2}+18 x$

Example:

A golf ball is struck and its height with respect to time is represented by the function $h(t)=-3 t^{2}+12 t$ where $h(t)$ represents height and t is the time in seconds.
(a) What is the direction of opening? \qquad
(b) Will the ball attain a maximum or minimum height? \qquad
(c) What is the maximum or minimum height?
(d) When does the ball reach its maximum or minimum height?
(e) What is the y-intercept?
(f) Create a table of values and graph the function.

Your Turn

1) State the vertex and equation of the axis of symmetry.

Vertex: \qquad

2. Given the table of values, state the vertex, the y-intercept and the equation of axis of symmetry.

x	-1	0	1	2	3
y	10	1	-2	1	10

Vertex:

\qquad
Equation of axis of symmetry: \qquad
3. Determine the vertex, the y-intercept, and the equation of axis of symmetry for the quadratic function $y=2 x^{2}-8 x+7$.

Determine the Axis of Symmetry using Points on a Graph
points having same y-coordinates

Example: Determine the equation of axis of symmetry from the parabola.

Where is the axis of symmetry positioned compared to the location of the two given points?

Your Turn: Determine the equation of axis of symmetry from the parabola.

Summary: Axis of symmetry
(i) A vertical reflection line that passes through the vertex
(ii) Can be attained by the formula $x=-\frac{b}{2 a}$ when the quadratic function $y=a x^{2}+b x+c$ is given.
(iii) Can be attained from two points with the same y-coordinate by AVERAGING THE X-COORDINATES.

Example: Determine the equation of axis of symmetry for each parabola that contains the points:

(a) $(-2,4)$ and $(6,4)$
(b) $(5,0)$ and $(11,0)$

Domain and Range of a Quadratic Function

Domain: is the set of all input values (or x-values)
Range: is the set of all output values (or y-values)

The domain and range can be determined:
(i) Graphically
(ii) Using a Table (or set of points)
(iii) Function

1. State the domain and range for:
(a)

Domain: \qquad
Range: \qquad
(c)

Domain:
Range: \qquad
(b)

Domain: \qquad
Range: \qquad
(d)

Domain:
Range:
\qquad
\qquad

Determining Domain \& Range from a Quadratic Function

How do we attain the domain of a quadratic function such as $y=-2 x^{2}+4 x+1$ without the aid of a graph?
. direction of the opening

(a) What is the direction of opening for the given function?
(b) Will the function have a maximum or minimum value?
(c) How can we algebraically attain the maximum/minimum value?
(d) How does the above information enable us to express the range?

Summary:

To attain the domain and range from $y=a x^{2}+b x+c$

Domain: For any unrestricted quadratic function is $x \in \mathfrak{R}$

Range: (i) determine the direction of opening
(ii) determine the \boldsymbol{x}-coordinate of vertex by $x=-\frac{b}{2 a}$
(iii) Substitute the result from (ii) into the function $y=a x^{2}+b x+c$ to get the maximum/minimum value
(iv) State the range.

> If $a>0$, then $y \bigotimes y$ - coordinate of vertex
> If $a<0$, then $y<y$-coordinate of vertex

Example: Determine the domain and range for:

(a) $y=3 x^{2}-2$
(b) $y=x^{2}+4 x+4$
(c) $y=-x^{2}+6 x-8$
(d) $y=-2 x^{2}+4 x-1$

Work Sample: 6.2: pg. 333 \#s 3a-b, 4a-d, 6a-c, 9a)c), 11a-c i)iv), 13a-c, 15

