CHAPTER 6

Quadratic Functions

Math 1201: Linear Functions $y=m x+b$

Math 2201: Quadratic Functions

Math 3201: Cubic, Quartic, Quintic Functions

Section 6.1: Exploring Quadratic Relations

The path a ball travels gives a special "U" shape called a "parabola."

Quadratic Functions:

\longrightarrow the shape is a parabola
\longrightarrow the simplest quadratic function is $y=x^{2}$
(The word quadratic comes from the word quadratum, a Latin word meaning square.)

How to create a quadratic function?
the result of multiplying two linear functions:

Example:
(i) $y=(x+1)(x-4)$
(ii) $y=(3 x-2)^{2}$

What do you notice about the degree (highest exponent of the variable) of the function?

Which of the following functions are quadratic?

i) $y=5(x+3)$
ii) $y=5 x(x+3)$
iii) $y=5\left(x^{2}+3\right)$
iv) $y=(5 x+1)(x+3)$
v) $y=5^{2}(x+3)$
vi) $y=5(x+3)^{2}+2$

Characteristics of the basic quadratic function $y=x^{2}$.

Create table of values

x	y
-2	
-1	
0	
1	
2	

What is the vertex? \qquad

What is the x-intercept? \qquad

What is the y-intercept? \qquad

What is the domain and range? Domain: \qquad
Range:

Direction of Opening: a parabola can open up or down.

When the graph opens up the vertex is the lowest point on the graph and the y-coordinate of the vertex is the minimum value of the function.

When the graph opens down the vertex is the highest point on the graph and the y-coordinate of the vertex is the maximum value of the function.

Axis of Symmetry

- The parabola is symmetric about a vertical line called the axis of symmetry
- This lines divides the graph into two equal parts.
- It is the mirror image
- It intersects the parabola at the vertex

The equation of the axis of symmetry corresponds to the x-coordinate of the vertex

- What is the equation of the axis of symmetry for the above graph?

Another Example:

What is the equation of the axis of symmetry?

Relation vs Function

Why are quadratic relations also quadratic functions?
$>$ For every value of x there is only one value for y.
> It passes the vertical line test!

Think about:

Standard Form of A Quadratic Function:

$$
y=a x^{2}+b x+c \quad \text { where } \quad a \neq 0
$$

Terminology:

- $a x^{2}=$ the quadratic term
- $a=$ the coefficient of the quadratic term

Example: $y=3 x^{2}-4 x+1$
$3 x^{2} \longrightarrow \longrightarrow$ term and 3 is the \qquad
$-4 x \longrightarrow \longrightarrow$ term and -4 is the

1

Standard Form of A Quadratic Function:

$$
y=a x^{2}+b x+c
$$

\checkmark Investigate the parameters a, b and c

Part A: The Effect of \boldsymbol{a} in $y=a x^{2}$ on the graph of $y=x^{2}$

1) What happens to the direction of the opening of the quadratic if $a<0$ or $a>0$?
2) If the quadratic opens upward, is the vertex a maximum or minimum point?
3) If the quadratic opens downward, is the vertex a maximum or minimum point?
4) Is the shape of the parabola effected by the parameter a ? Are some graphs wider or narrower compared to the original $y=x^{2}$?
5) What happens on the graph when $a=0$?

Part B. The Effect of b on the graph of $y=x^{2}$

What is the effect of parameter b in $y=x^{2}+b x$ on the graph of $y=x^{2}$?

- b changes the location of the:
and the \qquad
$\underline{\text { Part C. The Effect of } c \text { on the graph of } y=x^{2}}$

What is the effect of parameter c in $y=x^{2}+c$ on the graph of $y=x^{2}$?

- the c-value changes the

In Summary

Key Ideas

- The degree of all quadratic functions is 2 .
- The standard form of a quadratic function is

$$
y=a x^{2}+b x+c
$$

where $a \neq 0$.

- The graph of any quadratic function is a parabola with a single vertical line of symmetry.

Need to Know

- A quadratic function that is written in standard form, $y=a x^{2}+b x+c$, has the following characteristics:
- The highest or lowest point on the graph of the quadratic function lies on its vertical line of symmetry.
- If a is positive, the parabola opens up. If a is negative, the parabola opens down.

- Changing the value of b changes the location of the parabola's line of symmetry.
- The constant term, c, is the value of the parabola's y-intercept.

