

Quadratic Functions

Math 2201: Quadratic Functions

Math 3201: Cubic, Quartic, Quintic Functions

Section 6.1: Exploring Quadratic Relations

The path a ball travels gives a special "U" shape called a "*parabola*."

Quadratic Functions:

the shape is a parabola

 \longrightarrow the simplest quadratic function is $y = x^2$

(The word *quadratic* comes from the word *quadratum*, a Latin word meaning *square*.)

How to create a quadratic function?

→ the result of multiplying two linear functions:

Example:

(*i*)
$$y = (x+1)(x-4)$$
 (*ii*) $y = (3x-2)^2$

What do you notice about the degree (highest exponent of the variable) of the function?

Which of the following functions are quadratic?

- i) y = 5(x+3)ii) y = 5x(x+3)iii) y = 5x(x+3)iv) y = (5x+1)(x+3)
- v) $y = 5^{2}(x+3)$ vi) $y = 5(x+3)^{2} + 2$

Characteristics of the basic quadratic function $y = x^2$.

Create table of values

What is the vertex?_____

What is the x-intercept?_____

What is the y-intercept?_____

What is the domain and range? Domain:_____

Range:_____

Direction of Opening: a parabola can open up or down.

When the graph opens **up** the vertex is the lowest point on the graph and the y-coordinate of the vertex is the minimum value of the function.

When the graph opens **down** the vertex is the highest point on the graph and the y-coordinate of the vertex is the maximum value of the function.

Axis of Symmetry

- The parabola is symmetric about a vertical line called the **axis of symmetry**
- This lines divides the graph into two equal parts.
- It is the mirror image
- It intersects the parabola at the vertex

The equation of the axis of symmetry corresponds to the <u>x-coordinate</u> of the vertex

• What is the equation of the axis of symmetry for the above graph?

What is the equation of the axis of symmetry?

Relation vs Function

Why are quadratic *relations* also quadratic *functions*?

- > For every value of *x* there is only one value for *y*.
- > It passes the vertical line test!

Think about:

Standard Form of A Quadratic Function:

$$y = ax^2 + bx + c$$
 where $a \neq 0$

Terminology:

- ax^2 = the *quadratic term*
- a = the coefficient of the quadratic term

Example:
$$y = 3x^2 - 4x + 1$$

 $3x^2 \rightarrow$ term and 3 is the _____
 $-4x \rightarrow$ term and -4 is the _____
 $1 \rightarrow$

Standard Form of A Quadratic Function:

$$y = ax^2 + bx + c$$

 \vdash Investigate the parameters *a*, *b* and *c*

Part A: The Effect of *a* in $y = ax^2$ on the graph of $y = x^2$

- 1) What happens to the direction of the opening of the quadratic if a < 0 or a > 0 ?
- 2) If the quadratic opens upward, is the vertex a maximum or minimum point?
- 3) If the quadratic opens downward, is the vertex a maximum or minimum point?
- 4) Is the shape of the parabola effected by the parameter *a* ? Are some graphs wider or narrower compared to the original $y = x^2$?
- 5) What happens on the graph when a = 0 ?

Part B. The Effect of b on the graph of $y = x^2$

What is the effect of parameter *b* in $y = x^2 + bx$ on the graph of $y = x^2$?

• *b* changes the location of the:_____and the _____

Part C. The Effect of c on the graph of $y = x^2$

What is the effect of parameter *C* in $y = x^2 + c$ on the graph of $y = x^2$?

• the *c*-value changes the _____

In Summary

Key Ideas

- The degree of all quadratic functions is 2.
- The standard form of a quadratic function is

$$y = ax^2 + bx + c$$

where $a \neq 0$.

 The graph of any quadratic function is a parabola with a single vertical line of symmetry.

Need to Know

- A quadratic function that is written in standard form,
 - $y = ax^2 + bx + c$, has the following characteristics:
 - The highest or lowest point on the graph of the quadratic function lies on its vertical line of symmetry.
 - If a is positive, the parabola opens up. If a is negative, the parabola opens down.

- Changing the value of b changes the location of the parabola's line of symmetry.
- The constant term, c, is the value of the parabola's y-intercept.

Work Sample 6.1: pg. 324 #s 1a-f, 2a-e, 5a-d